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Abstract 

Barrel centerline curvature is known to influence the location of projectile shot impacts. 
Superimposed on the unique manufactured barrel centerline is the flexed barrel shape that can 
occur prior to firing while the tank is on the move. In order to understand and quantify the 
effects of barrel flexure on gun accuracy, it is necessary to determine what combination of 
fundamental mode shapes is most likely to occur. A method to accomplish this task is described 
in this report. The method is demonstrated by enumerating the 10 most likely mode shape 
combinations (flexed barrel shapes) that were found to occur in an M256 barrel mounted in an 
ML42 tank while it traversed the RRC-9 bump course at Aberdeen Proving Ground, MD, at 15 
mph. 
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1. Introduction 

Excluding aiming and pointing errors, tank gun inaccuracy can be compartmentalized into 

three areas. One source of variation is associated with the ammunition (e.g., variations in the 

projectile geometry and mass asymmetries and/or chambering differences between rounds). 

Another source of error arises from factors that can change from occasion to occasion within the 

same gun system, e.g., the effect of weather conditions such as temperature, sun, wind, and 

moisture, on component parts like the ammunition (Held, Webb, and Schmidt 1991). A third 

error category is attributable to variations in the barrel, e.g., wear conditions and/or centerline 

shape (Wilkerson 1995). This report deals with the latter source of error. In particular, the topic 

of discussion here is how the barrel centerline shape can be perturbed prior to firing on the move 

as a result of lateral flexing created by the vehicle motion. 

Before proceeding, a 

static firing. Figure 1 

inaccuracy can affect the 

brief discussion is 

portrays how the 

in order on how 

three previously 

firing on the move differs from 

mentioned contributors to gun 

fall of shot. For instance, the illustration conveys that for a given gun 

tube firing from a stationary vehicle on a given day, there will be a spread in target impacts 

(referred to as round-to-round or target impact dispersion [TID]) about a center of impact (COI). 

Note, even though projectile gravity drop is factored into the muzzle aim point, the CO1 will not 

necessarily lie on the target (cross in Figure 1). 

The angle subtended at the muzzle between the CO1 and the expected (gravity corrected) 

target impact point (cross) is referred to as jump. Jump is primarily due to the effects of lateral 

and rotational motion imparted to the projectile by the barrel, sabot, and aerodynamic forces 

before it reaches free flight. Figure 1 (inset) breaks down the jump into a series of directional 

changes (as enumerated by Bomstein et al. 1988) caused by (1) a difference in the muzzle 

pointing angle at shot exit relative to the original line of fire, (2) a muzzle transverse (crossing) 

velocity at shot exit, (3) a transverse velocity of the projectile’s center-of-gravity at shot exit 

relative to the muzzle (cg jump), (4) asymmetric lateral sabot discard forces, and (5) 

aerodynamic lift forces up to the point of the first maximum in yaw (Bundy 1999). 
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If the same gun and lot of ammunition were to be fired the next day, all other factors being 

the same, the impacts would likely be scattered about a different COI; such a shift in CO1 falls 

under the category of occasion-to-occasion jump error. On the other hand, if a different barrel 

was fired from the same tank on the same day with the same lot of ammunition, the scattering of 

impacts would likely occur about yet another COI; this phenomenon would be recognized as 

tube-to-tube jump variation. 

Using data accumulated from a large number of tank, tube, occasion, and ammunition lots, an 

all-inclusive (occasion-to-occasion, plus tube-to-tube) mean jump for the entire fleet of tanks has 

been established and used to make an average/gross correction to the firing aim point for each 

ammunition type, known as the computer correction factor (CCF). 

Firing on the move creates yet another source of error. The effects of varying barrel motion 

(flexure) due to tank travel are superimposed on the more repeatable barrel motion effects caused 

by the firing event itself (e.g., Figure 2, Guidos 1999), resulting in an increase in shot scatter. 

Thus, the moving TID (mTID) will be greater than the stationary TID (sTID), as illustrated in 

Figure 3. 

Issues related to on-the-move firing performance can be subdivided into two parts: (1) 

prefiring effects, which address the dynamic behavior of the gun tube during on-the-move 

vehicle operation, and (2) firing effects, which address the in-bore dynamics of the projectile. 

The focus of this study is limited to the former, but ultimately, it is hoped that the insights gained 

here will suggest modifications to the fire control system that will improve the overall on-the- 

move system accuracy. 
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Mean Jump for a Large Sample Set 
(Alias: Computer Correption Factor, CCF) 

\ Ilay 1, Gun 1 

Center of Impact (CO 
Occasion-to-Occasion 
Variation in COVJump 

,Gun I 

Target Impact Dispersion, TID 
(One Std. Deviation in Impact Scat 

Tube-to-Tube Variation in COI/Jump 

/T \ {Muzzle AimI’oint , 

Figure 2. 

Figure 1. Typical Stationary Firing Results. 
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Example of Barrel Motion Repeatability for an M256 Barrel 
Firing MS65E3 Training Rounds (Courtesy of Guidos 1999). 
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Muzzle Aim Point 

stationary TID -(sTID) 
stationary CO1 (sCOI) 

CCF 

i 

moving COI, (mCO1) 
moving TID (mTID) 

Day 1, Gun 1 (moving) 

Figure 3. Illustration of Firing-on-the-Move Results From the Same Gun 
Firing on the Same Day. 

2. Describing Barrel Motion 

Prefiring barrel motion can be broken down into its rigid-body and flexing mode components 

as follows: 

Vivid hOIll> 
, 7 

y(x,t) = Y,W + Wlx - x, I + _ ytx t) 

Jlch~ mode 

(1) 

where y gives the vertical component of the lateral barrel displacement (relative to the static 

barrel centerline) at time t in an earth-fixed coordinate frame; x specifies the axial barrel 

coordinate relative to the breech face (x, is the location of the trunnion); y, gives the vertical 

displacement of the trunnion axis, ’ * 6 specifies the rotation of the barrel about the trunnion axis; 

and Y gives the vertical component of the lateral barrel displacement (relative to the static barrel 

centerline) in a coordinate frame that is rotating and translating with the barrel. The flexing 

mode component, Y, can be further broken down into 



where Yi (i = 1, 2, 3) are the first three barrel flexing mode shapes (normalized to unity), and qi 

gives the amplitude of each mode shape. It is assumed in Equation 2, and later shown to be the 

case, that no more than the first three mode shapes are needed to account for barrel flexing from 

tank motion. The next section discusses the rigid-body terms, 0 and yt. 

2.1 Rigid-Body Barrel Motion Due to Vehicle Travel While Target Tracking 

Current tank gunnery protocol calls for the periodic checking/adjustment of the gunner’s 

sight line to ensure that it is coincident with the muzzle (bore scope) sight line, when both are 

aimed at a distant target and the tank is stationary. When targeting an object while the tank is on 

the move, an angle resolver is used to measure the sight rotation angle, 8, to within _+lO arc 

seconds (kO.05 mrad). (Briefly, an angle resolver functions by measuring induced voltage in a 

secondary winding as a function of its axial orientation in the field of a primary winding.) Based 

on the sight resolver output, a force is delivered to the barrel (through a hydraulically controlled 

piston actuator) that causes the barrel to rotate by the same amount as the sight, as measured by a 

(second) barrel-angle resolver. The resolver-actuator control is the essence of the current gun 

stabilization system, intended to keep the line of fire directed at the target, illustrated in Figure 4. 

As described, maintaining target pointing is critically dependent on the target-following abilities 

of the gunner (manifest in the sight resolver output); however, new technologies such as auto- 

tracking have the potential to significantly reduce the demands on the’gunner during this process. 

Figure 4. Caricature of Rigid-Body Motion of the Sight and Barrel 
While Target Tracking as the Tank Traverses a Bump. 



The preceding discussion focuses on rigid-body gun pointing as a means of improving 

accuracy by keeping the line of fire directed at the target while the tank is traversing terrain 

disturbances that would otherwise cause the barrel to pitch (rotate) up or down. A secondary 

accuracy issue concerns the lateral velocity (jump) that would be imparted to the projectile at 

shot exit due to (1) rigid-body translation of the barrel caused by tank travel and (2) actuator- 

induced rigid-body rotation of the barrel enforced during target tracking. The jump derived from 

rigid-body translation and rotation for the moving, target-tracking barrel would be superimposed 

on the aforementioned crossing velocity jump. Knowing and compensating for projectile jump 

due to vehicle motion and target tracking would improve firing-on-the-move accuracy. The 

inclusion and use of a vertical plane accelerometer to determine jl, , along with a knowledge of 

6 (from the sight resolver output), could be used to determine such a firing-on-the-move 

correction angle, V)rigid_b&y: 

(3) 

where v,~.,~,~,~~I~ is the standard launch velocity of the projectile and x,,, is the breech-face-to-muzzle 

distance (note, positive 6 will be in the direction from positive i to positive jl , see Figure 5). 

t.,(niuzAe) = j, + ( X,, - .r, ,J ~4 

Figure 5. Rigid-Body Motion of the Barrel ( j, and b ) Due to Terrain and Actuator Forces. 
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Although it was possible to explicitly describe, via Equation 3, the effects of rigid-body 

barrel motion on the projectile (caused by target tracking and tank motion), quantifying the 

effects of barrel flexing on the projectile’s flight path is not as easily done. In fact, such detail is 

not within the scope of the present study; the primary interest here is on how to determine and 

describe the dominant barrel flexing modes, and possibly conjecture as to their effect on the 

projectile. 

2.2 Barrel Flexing Modes and Tube Shapes 

Modeled as a system of point masses connected by spring-like forces, the fundamental barrel 

flexing modes can be determined by solving the appropriate mass-stiffness matrix. The first 

three mode shapes for the M256 120-mm barrel are shown in Figure 6; all shapes are normalized 

to unity. Note, all three mode shapes pass through zero at the location of the trunnions (-53 in, 

1.35 m) and actuator (-35 in, 0.89 m), where the point masses are considered to be pinned. 

Recall, in principle, rigid-body motion accounts for the displacement as well as rotation of the 

line passing through the actuator and trunnion points (Equation 1), relative to which the mode 

shapes of Figure 6 are referenced. (hi actuality, for modeling barrel mode shapes, it would be 

more appropriate to consider the barrel pinned at the front and rear load-bearing surfaces within 

the recoil mount; for simplicity, however, this is not done here.) 

3. Barrel Flexing Due to Tank Motion 

The shape of the flexed barrel at any given time is determined by the mode shape amplitudes, 

qi, according to Equation 2. Figure 7 shows a typical time sample of the mode shape amplitudes 

for the M256 barrel mounted on the MIA2 tank, traversing the bump course referred to as RRC- 

9 at Aberdeen Proving Ground, MD. As indicated, the first mode is the dominant one. While 

traversing RRC-9, the ratio of amplitudes ~/.+cJ~TcJ~ was found to be on the order of 25:5: 1. This 

being the case, it is possible to adequately characterize/model flexing of the M256 barrel over 

this course by summing over just the first two mode shapes in Equation 2. 
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Distance from RFT (in) 

First Three Fundamental Barrel Flexing Mode Shapes 
(Normalized to Unity) for the M256 120-mm Barrel. 
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Figure 7. Typical Mode Shape Amplitudes While Vehicle Is in Motion. 
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Figure 8 illustrates how the ratio of q//42 can be discretized by counting the number of 

occasions that a given ratio (within some tolerance band) occurs over a given time span. Figure 

9a shows how the distribution of ratios qllq2 varies, over the range from -50 to +50 in 

increments of 1, while an M 1 A2 tank traversed RRC-9 at 15 mph (taking an elapsed time of 20 s 

and generating 9,000 data samples). (This type of accounting/plotting will fluctuate somewhat 

with the points selected and the width of the increments, but in general, trends will be 

independent of these factors.) For instance, it can be seen from Figure 9a that the value of q//q2 

between -1.5 and -0.5 occurred most often, 523 times out of the 9,000 time increments sampled 

(this same peak location occurred when the sampling was refined tenfold). Figure 9b shows the 

___--____--_+_ L t; __________________________________---_______-_____-___________-----____~~--_____ 

0 
____________i_L;______________________________________-_________________________________________ 

0 

100 ‘: ” . 

F I 

1. 

100 

J: !, 

I’ 
-600 

I 
J 

-800 0 --- - 0.02 0.01 0% 0.0s iI:1 0.12 0.h b.16 0% -a:! 

Time (set) 

Figure 8. Typical Ratio of ql/ql While Vehicle Is in Motion-An Example 
of Data Discretization by Banding. 
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I Figure 9. Ratio of qJq2foI.u It4256 Barrel Traversing RRC 9 Bump Course- (a) 
Number of Occurrenct&dU!MLW Lhliz 

here are some underlying subtleties to be aware of in the plot of Figure 9b (or 9a, for that 

ratter) as elaborated upon in Figure 10. In particular, each point on the curve (such as the point 1 lhere ~,/cJ,J = -1 and the frequency of occurrence is 5.8%) is determined from a set, S, of ratios 

,lqz that are all within AX, the band tolerance (e.g., +0.5), of the point in question (e.g., out of tl 

000 ratios of q,/q2, 523, or 5.8%, had a value between -1.5 and -0.5). Hence, for each poi 

% .edian values can be determined for q/ and q2 within the corresponding set S. These medi 

ilues are plotted in Figure 10, as essentially the third dimension of Figure 9b. Before 

iscussing the significance of these median values, it is informative to catalog the 10 most likely I 

ratios of q//q2, as displayed in Table 1. The top 10 cases are nearly equal in likelihood ’ 

occurrence, ranging from a low of 3.4% (case 10) to a high of 5.8% (case 1). However, there is 

:ry gradual trend that shows higher values of q//q2 are less likely to occur; this observation I 

lown more dramatically in the plots of Figures 9 and 10. I 



: 
.:’ 

‘. 

Figure 10. Frequency of Occurrence and Median Amplitudes for a Given Amplitude Ratio. 

Table 1. Ten Most Likely Ratios of ql/qz 

Probability 
Order 

Ratio of 9,1y2 

(+_O.S) 
Frequency of Median Value Median Value 

9,192 of 9, of 92 
1 1 -I 

/ Occurring (o/o) ( (inches X 10-Y) 1 (inches X IO-.‘) 1 I I 
--I .5 +1.7 

I 
CQ 

c3 -1.0 ( 

CO 4.2 -6.9 +1.7 L- 
4.0 -4.0 -2.1 

-I.-L .6 I -1.9 1 

-8 .O +l 6 A__ ___ 
5.0 3.4 -7.6 +1.2 

+ 

3.8 

Total - 45.2% 



From Table 1, it can be seen that the median values of q2 vary in magnitude from O.OOl- 

0.003 in (0.025-0.076 mm), a fairly uniform grouping, over the top 10 cases, which occur 

roughly 45% of the time. (For perspective, this range is on the order of the error in current 

centerline measurement techniques.) Thus, the magnitudes of 41 will increase as the ratio of 

q//q2 increases, with the proportionality constant being 0.001-0.003 in. A case in point, for one 

of the larger ratios in Table 1, q//q2 = -5, the magnitude of the median 41 was 0.008 in. 

Generalizing, we could expect this magnitude of q1 to occur roughly 3.7% of the time, with 

smaller magnitudes of q/ occurring roughly 40% of the time. From a standpoint of gun accuracy, 

the larger the magnitude of q/ (the dominant mode), the larger the possible muzzle deflection 

angle and angular rate, which generally leads to an increase in the spread of shot impacts. 

Hence, one option for a fire-inhibit solution might be to fire only when 1 q/ I, or the ratio of 

1 q//q2 1, is small (e.g., 1 q//q2 I 5 4). How such a fire-inhibit system might be implemented is not 

within the scope of the current study; the comment is merely made to show the practical 

significance of the median values of q/ (and q2) for any given ratio q//q2. 

Figure 11 shows the barrel flexure profiles corresponding to each of the top 10 ratios listed in 

Table 1. The most undulating shapes are those with the highest proportion of second mode 

motion (e.g., cases t-5). For the most part, the higher amplitude shapes are those dominated by 

first mode motion (e.g., cases 6-10). 

The top 10 tube shapes in Table 1 and Figure 11 were obtained by searching the database of 

Figure 9b for any case where the frequency of occurrence exceeded 3%. When this search 

window was broadened to include any case where the probability was greater than 0.5%, 37 

ratios were found that met this criterion, These 37 cases, plotted in Figure 12, represent the 

flexed barrel profile for a combined 82.5% of the bump-course transit time. The spread in peak 

amplitudes across this group is roughly 0.030 in (0.76 mm). Also shown in Figure 12, for 

comparison, is the average manufactured centerline shape for the M256 barrel (Wilkerson 1998). 

For the most part, the spread in manufactured barrel centerlines, as registered by their (peak) 

12 



muzzle displacements, spans about 0.100 in (2.5 mm) (i.e., kO.050 in [ 1.25 mm] on either side of 

the average shown) .* 

45.2% of 
the time, 
the barrel is 
approximately 
one of these 
shapes 

-8 
0 k0 1'0 200 250 

Figure 11. Ten Most Likely Barrel Shapes Over Bump Course. 

4. Summary and Conclusions 

This report has documented a methodology to assess the superimposable effects of tank 

motion on the static barrel centerline shape of a rigidly rotating and translating barrel. It has 

been shown, for example, that for an M2.56 barrel in an MlA2 tank traversing the RRC-9 bump 

course at 15 mph, the resulting barrel flexure could be adequately captured by a linear 

combination of just the first two mode shapes (higher order mode shapes were not a significant 

factor). For roughly a third (34%) of the bump course transit time, the ratio of the first to second 

mode amplitudes was I 3. Moreover, for this mixed-mode group, the median mode shape 

’ Although the acceptable tolerance in peak muzzle displacement (relative to a straight line) spans 0.160 in (4 mm). 
most manufactured barrel centerlines fall well within this tolerance limit. 
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amplitudes were relatively small (for reference, they were typically smaller than three times the 

magnitude of the current static centerline measurement error). The remaining two-thirds of the 

time, the barrel was essentially exhibiting first-mode motion, albeit with relatively large 

amplitude, such that the spread in peak muzzle displacement over more than 80% of the bump 

course transit time was equivalent to roughly a third of the spread in statically measured muzzle 

displacements for barrels coming off the current production line. 

This later comparison, between the dynamic variation in a given barrel centerline (due to 

vehicle motion) and the static variation in manufactured barrel centerlines, may permit the 

inference that the mTID from any given barrel might be on the order of one-third the tube-to- 

tube-based variation in COIs across the fleet. However, such an inference deserves further 

substantiation, 

0.025 

0.02 

Avg. M256 Vertical 
Centerline Shape 

82.5% of 
the time. 
the barrel is 
approximately 
one of these 
37 shapes 

\-‘1. 
,-:_ 

-_ 

-0 015 
c J 

-0.02 0 100 150 

Distance from RFT (in) 

200 250 

Figure 12. Comparison of Most Likely Bump Course Barrel Shapes With 
the Average Manufactured Shape for an M256 Barrel. 
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